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Stress and Electric Potential Fields
in Piezoelectric Smart Spheres

A. Ghorbanpour®, S. Golabi, M. Saadatfar
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Kashan, Iran

Piezoelectric materials produce an electric field by deformation, and deform when subjected
to an electric field. The coupling nature of piezoelectric materials has acquired wide applications
in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and
structures. In this paper, a hollow sphere composed of a radially polarized spherically aniso-
tropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) TiO;s under internal or external uniform
pressure and a constant potential difference between its inner and outer surfaces or combination
of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the
sphere induce the potential difference. The governing equilibrium equations in radially polar-
ized form are shown to reduce to a coupled system of second-order ordinary differential equa-
tions for the radial displacement and electric potential field. These differential equations are
solved analytically for seven different sets of boundary conditions. The stress and the electric
potential distributions in the sphere are discussed in detail for two piezoceramics, namely
PZT_5 and (Pb) (CoW)TiOs. It is shown that the hoop stresses in hollow sphere composed of
these materials can be made virtually uniform across the thickness of the sphere by applying an
appropriate set of boundary conditions.
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tric actuators can be used to modify the shape of
1. Introduction an airfoil, thereby reducing transverse vortices

(Destuynder, 1999), or to maintain proper ten-

In recent years there has been a resurgence of
interest in piezoelectricity, motivated by advances
in smart structures technology. It is well known
that piezoelectric materials produce an electric
field when deformed, and undergo deformation
when subjected to an electric field. The coupling
nature of piezoelectric materials has attracted
wide applications in electric-mechanical and elec-
tric devices, such as electric-mechanical actuators,
sensors and transducers. For example, piezoelec-
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sion with overhead electrical wires on a loco-
motive pantograph (Jiang et al., 1999). In addi-
tion to being used as actuators, which respond to
changes in an electric field by producing me-
chanical strain, they can also be used as sensors,
which respond to a mechanical strain by pro-
ducing an electrical signal. One notable civil en-
gineering application of piezoelectric sensors is
in structural health monitoring (Kawiecki, 1999).
A change in the level of strain will produce an
electric charge and trigger sensors in the struc-
ture. The development of distributed piezoelec-
tric sensors and actuators is essential for the de-
sign of future light-weight and high-performance
structures with adaptive capabilities. In addition,
various piezoelectric materials have been used in
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many transducer designs, sonar applications, med-
ical ultrasonic equipment, robot tactile sensors,
acoustic pick—ups, force and strain gages, etc. The
advance in piezoelectric materials technology has
a significant impact in diverse fields, such as the
space and aircraft industries.

Piezoelectric materials show linearity between
components of stress and strain, as well as between
electric field and electric displacements, only over
limited ranges of mechanical or electrical applied
fields. The limits of linear behavior depend on the
coercive field used to polarize the material and on
material composition.

Because of the difficulty related to the particu-
lar coupling effect between electric field and me-
chanical deformation, few problems were consi-
dered before 1990. Spherical isotropy is a special
kind of transverse isotropy that was introduced
in 1865 by Saint-Venant, who gave an exact solu-
tion of a spherically isotropic spherical shell sub-
jected to both internal and external uniform pres-
sures (Love, 1927 ; Lekhnitskii, 1981).

Problems of radially-polarized piezoelectric
bodies were considered and solved analytically
(Chen, 1998). In the literature (Chen, 1998) the
solution for isotropic medium provided static be-
havior such as stress concentration. Sinha (1962)
obtained the solution of the problem of static
radial deformation of a piezoelectric spherical
shell and under a given voltage difference be-
tween these surfaces, coupled with a radial dis-
tribution of temperature from the inner to the
outer surface.

New applications of a piezoelectric sensors
and actuators are being introduced and expanded
for a number of geometric configurations. In this
paper, a hollow sphere composed of a radially
polarized anisotropic piezoelectric material, e.g.,
PZT_5 or (Pb) (CoW) TiOs, subjected to internal
or external pressure and a constant potential dif-
ference between its inner and outer surfaces or
combination of these loadings has been studied.

A brief summary of the constitutive equations
for linear piezoelectric solids and also axisym-
metric problem is formulated in the following
section. The governing equilibrium equations in
radially polarized form are reduced to a coupled

system of second —order ordinary differential
equations and are solved analytically for seven
different sets of boundary conditions. Finally,
stress and electric potential distributions are dis-
cussed in detail for two different piezoceramics,
namely PZT_5 and (Pb) (CoW) TiOs.

2. Basic Constitutive Equations

The governing constitutive equations for a ho-
mogeneous anisotropic piezoelectric solid can be
written as (Berlincourt, 1971 ; Tiersten, 1969) :

(Gj=1,--0) (1)
(m,k=1,--,3)  (2)

€= Sim0i; T AmiEm
Dn=emni0i;+ Emrn" Ex

Where ¢&;; and o;; are mechanical strains and
Siri Stresses respectively, are elastic compliances,
Dy are the components of electric displacement
(also referred to as charge density), E, are the
components of electric field, d; are the piezo-
electric module, in units of Columbs/Newton
(C/N), which relate the electrical and mechan-
ical effects and €% are the dielectric permittivity
constant at constant stress, in units Farads/Meter
(F/M). An alternate, inverted form of the go-
verning equations is (Berlincourt, 1971):

0ij = Cz‘jklc’:‘kz_emijEm (3)
Dn=emiei;+ GrsnkEk (4)

dm: is replaced by en;;, which represents the third
order tensor of piezoelectric coefficient whose
units are C/m?, and the elastic compliances S
is replaced by elastic constants Cgjx:* €me. denote
the dielectric permittivity constants at constant
strain (the superscript .S has been dropped), in
units of Farads/Meter (F/M). The notation can
be contracted in standard fashion by noting that
a single subscript for the stress components can
represent the double subscript notation, e.g., 11=
1,22=2,33=3,23=4,13=5 and 12=6. In final
form, the rotated elastic stiffnesses are given by
Cll, CZZ, C33, C449 C557 Cﬁﬁ, C127 Cl3 and CZ3~ The
non-zero elastic coefficients are represented by
e, €12, €13, €2 and ez, and non-zero dielectric
constants by €1, €2 and es3. It is also noted that
the electric field K5 can be written in terms of
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electric potential ¢ as:
E=-V¢ (5)

In this study, two different piezoelectric mater-
ials were considered, i.e. PZT_5 and (Pb) (CoW)
TiOs, which are widely used in smart materials
and structures technology.

3. Static Problem for
a Hollow Sphere

A hollow sphere, with inner and outer radius
of a and b respectively, subjected to axisymme-
tric mechanical and electrical loadings was consi-
dered in here (Fig. 1). The center of the spher-
ical coordinate system (7, &, @) considered in this
research is located at the center of the hollow
sphere. It is noted that when piezoelectric mater-
ials are poled spherically in the radial direction,
they will exhibit spherical isotropy. The equilib-
rium equations, in the absence of body and inertia
forces are (Fung, 1965):

00 1 00rg 1 00
8r+7sin§ 50 7 g
+ 207 — Ooo— Oge + 0r¢ COL § =0

v

aUrg+ 1 30‘9; ! 8(7;;
70 ' rsin¢ 08 ' r 98¢
| 30n+ (0g—0se)cot &
f =

/4

0

00 1 0040 1 0006t
or ' rsin¢ 900 ' r o
+ 30‘7«9"’20‘0; cot é‘ =0
/s

where 0;; are the stress tensors.

In the absence of volume electric charges, the
charge equation of electrostatics is given by
Tiersten (1969):

or r 0¢ r

1 0Dy , cot & ~
+7’sin§ 50 T D=0

0Dy 1 Dy | 2D,
(7)

where D,, Dy and Dy are electric displacement
components in the radial, circumferential and azi-
muthal directions, respectively.

Electrodes

Fig. 1 Hollow sphere subject to uniform internal
pressure P;, uniform external pressure P, and
applied voltage V'

The strain-displacement relations can be writ-
ten in the spherical coordinate system as :

Pl
T or
_ 1o u
Ea=, 8§+7
1 ow |, cot & u
€0="0sin¢ a0 ' ~r vty ®
e, = U ov_v
Ty ot Tor
_ L ov 1 ow_cotf
0= sin¢ 96 ¥ 9 7

_ 1 ou ow_w
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where &, €0 and &g are the components of the

linear strain tensor, and &, € and &, are the
components of engineering shear strain. The dis-
placement components are defined in radial g,
azimuthal », and circumferential w directions.
The electric field components E; are related po-
tential ¢ (7, &, @) using the relations :

__ 0%
E= o
E{::_%%? 9)
1 0¢
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In this paper, an analytic solution to the axisym-
metric problem, radially polarized, radially or-
thotropic piezoelectric hollow sphere were devel-
oped. The displacement field is assumed as :

Ur:u <7/)

U;ZO

S (10)
p=¢(7r)

Substituting these displacement functions into equa-
tion (8), strain displacement relations can be

written as :
_ ou
=G
(11)
_u
Eoo—
s
0
E,= ——af

The constitutive relations of spherically isotropic
radially polarized piezoelectric media also read as
(Sinha, 1962 ; Chen and Shioya, 2001):

O0rr=Cué&r+ Cr2&go+ C135§§ —enks
Ooo= Cr2&rr + Cr2€00+ C23€:§_€12Er (12>
0g= Ciserrt+ Cascoot Cszege— e Er

Substitution of equations (9) and (11) in (12),
leads to:

ou

Orr=— Cnﬁ d¢

+ (Ciz+ Ci3) %-1— en dr

%4—@12% (13)

+ ez Zﬁ

Oo0— C1zg%+ (sz"’ Czs)

0
Og=— C13877;f+ (Czs+ Caa) %
Substituting displacement functions (11), into
2), the field-potential re-
lations (9), the equations of equilibrium (6), and

stress—strain relations (1

the charge equation of electrostatics (7) yield the
following two equations :

1923

Fu Cu au
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Equations (14) constitute a coupled system of
linear second-order ordinary differential equa-
tions for % (#) and ¢#. In absence of free charge
density, the charge equation in the case where
there is radial symmetry can be rewritten as :

aD'r
or

where D, is the component of radial electric dis-

oD 1 2 - Dr=0 (15)

placement. The solution to this equation is:
A
D,="% (16)

where A; is a constant. Substituting the displace-
ment functions into the piezoelectric constitutive
equation and reducing the equation of equilibri-
um and the charge equation to a single equation

results :
i 2
( Cll_l_ﬂ) 8277,;+l< C11‘|‘ﬂ> Ou
en/ or r en/ or (17)
+%{C12_C23 Cot (eu 2en) }uZ—Llezlz
’ enr

Accordingly equation (17) can be written to the
simpler form of:

82 2 Ju 2 _ 2A1€12
o072 + r or 2 Bu= enyr® (18)

where

Cot Cos—Crz +@(2€12_ 611)
s= (19)

811
Cu+

and
y=Cu+ eﬁ (20)

The solution to equation (18) for #(#) can be
written as :

= ay ay M
ulr)=Fhy"+Fr +B€1177’ (21)
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where Fi, F» and A, are constants, and

_ —1+/1¥83
- 2 (22)

a2

Integrating the expression for ¢(7) yields :

_en e [u Ar
o(r)="u+2 611/7 dr+ s +A, (23)

€11

where A, is a constant. Since % (#7) is known, the
electrostatic potential is computed as :

é(r) =<@+LQ)F7“1+<Q+AQ>FV“Z
€1 @ €n ! €1 @ € : (24>
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Substituting the expressions for % (#) and from
(21) and (24) into (13), results:
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where orr, 069 and oy are radial, circumferential
and azimuthal stress components, respectively.
Seven sets of boundary conditions, henceforth

2,3, 4,5 6 and 7, are
examined. In case 1, the sphere is subjected to an

referred to as cases 1,

internal uniform pressure, zero electric potential
difference across the spherical annulus, and free
mechanical boundary conditions on the outer sur-
face. In this case, the sphere acts as a sensor.

In the 2™ case, free mechanical boundary con-
ditions on both internal and external surfaces were
imposed. However, there is a uniform potential
difference prescribed across the annulus. In this
case, the sphere acts as an actuator. For conve-
nience, it is assumed that outer surface potential is
zero, and the potential on the inner surface is a
nonzero constant. Case 3 is a combined loading
case, i.e. a superposition of cases 1 and 2. In case
4, the sphere is subjected to an external uniform
pressure, zero electric potential difference across
the spherical annulus, and free mechanical bound-
ary conditions on the inner surface. Case 5 is the
combined loading case, i.e. a superposition of
cases 1 and 4. In case 6 the sphere is subjected
to an external uniform pressure and a uniform
potential difference between the inner and outer
surfaces of the sphere. Case 6 is a superposition
of cases 2 and 4. Case 7 is also a combined
loading, i.e. a superposition of the first and the
sixth cases. In this case the sphere is subjected to
uniform pressures on the inner and outer surfaces
of the sphere and a certain voltage difference
between these surfaces. The boundary conditions
for each case can be written as follow :

Case 1:
o (1) ==Ps, 0 (7) =0, ¢1(1) =0, $1() =0 (28)
Case 2:
o (1) =0, Urr(’?) =0, ¢:(1) =9, ¢1(7/) =0 (29)
Case 3:
o (1) =—P;, 0rr (1) =0, ¢1(1) =0, ¢1(5) =0 (30)
Case 4:
CTrr(l) :0, Urr<77> :_Pa, ¢1(1> :0, ¢1<77> :0 (31)
Case 5:
0 (1) =—P,, 0 () =—Po, ¢1(1)=0, ¢:(7) =0 (32)
Case 6:
0 (1) =0, 07 (7) =—Po, ¢ (1) =¢, $1(7) =0(33)
Case 7:
0 (1) ==Ps, 0 () =—Po, ¢1(1) =, ¢1(n) =0(34)
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where the constants, P;, P, and ¢ are the pre-
scribed dimensionless internal pressure, external
pressure and potential, respectively and 7 is as-
pect ratio, i.e. (p=5/a). For simplicity the bound-
ary conditions are normalized as: P;=1, P,=
1 and ¢=1, therefore the boundary conditions
(28) ~ (34) can be written as :

Case 1:
o (1) =—1, 0 (7) =0, ¢:(1) =0, ¢1(7)

Case 2:
orr (1) =0, a7 (7) =0, ¢1(1) =¢, ¢:1(7) =0 (36)

Case 3:

(35)
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Case 5:

o (1) =—1, o (1) =—1, ¢:(1) =0, $1(n) =0 (39)
Case 6:

0 (1) =0, o (7) =—1, ¢ (1) =1, $1(n)
Case 7:

o (1) =—1, o (1) =—1, (1) =1, $1(n) =0 (41)

(40)

For each of the cases 1,2,3,4,5,6 and 7, the sys-
tem of linear algebraic equations for the con-
stants F, F3, A; and A, can be written in the form

Man:bn ) 7) (42)

<n L,-

where the 4 X4 coefficient matrix M is defined in
terms of column vectors :

o (1) =14 0 (7) =0, ¢:(1) =1, $1() =0 (37)
M=| my my ms m 43
Case 4 - r1234J (43)
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r? ! H Bre H en fByen eu Beu €11
1 ( C12 ( 2e12  en en e 1 ))] 1
_ 2 — L . i
m [7’2 ( Clz Cn) 37611 eu €11 37611 €11 ,3611 €11 772 (46)
3=
( 2e12 ez | eu e _i_L)
€11 37611 €11 ,8611 €11
(_2612 €12 e e y L)L
L en fByen en Peun €n/ 7 J
0 Each set of boundary conditions determines the
" 0 (47) form of the column vector b on the right hand
1 side of equation (42). Thus b, bz, b3, b, bs, bs and
1 b7 correspond to cases 1,2,3,4,5,6 and 7, respec-
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Since Man,=b, (n=1,--+,7), where

the unknown constants F3, Fs, A; and A, for two
piezoceramics, tabulated in Tables 1 and 2 have
been obtained by the Cramer’s rule, and accord-

ingly :

aAn=

_ | Mo

s FZn_ M > Aln

Mln:[bn mz M3 7}14]
MZnZ[Wh bn ms 7}14]

M3n:[m1 maz by 7}14]

| Ms|
M|

(50)

4. Results for the Piezoceramics
PZT_5 and (Pb) (CoW)TiO3

(49)

The numerical results are drawn in diagrams

showing the variation of stress and potential across

the thickness of the sphere. The piezoelectric ma-
terials PZT_S and (Pb) (CoW)TiOs have been
selected because of their technological impor-

tance. Mechanical and electrical properties of

Table 1 Constant values Fi, F3, A; and A, for PZT-5 determined from seven sets of boundary conditions

7 F F, A A

1.3 0.0595 —0.6383 —1.8006e+3 —3.3401
Case 1: 0.0127 —0.3382 —830.9517 —1.0023

4 —6.3903e—7 —0.2501 —553.7986 —0.3341

1.3 0.0632 —0.6387 —1.8006e+03 —3.3402
Case 2: 0.0163 —0.3387 —830.9664 —1.0023

4 0.0035 —0.2510 —553.8256 —0.3342

1.3 0.0661 —0.6156 —1.8004e+03 —3.3400
Case 3: 0.0168 —0.3242 —830.8550 —1.0022

4 0.0035 —0.2380 —553.7423 —0.3341

1.3 —0.0035 —0.0121 —0.0563 2.4846e—005
Case 4: —0.0041 —0.0140 —0.0967 —4.7063e—05

4 —0.0066 —0.0227 —0.1972 —1.7374e—04

1.3 —0.0037 3.2221e—004 0.0099 3.1918e—005
Case 5: —0.0036 5.3092¢ —004 0.0147 4.0791e—005

4 —0.0035 9.3583e—004 0.0270 6.5070e —005

1.3 0.0565 —0.6614 —1.8008e+03 —3.3404
Case 6: 2 0.0122 —0.3527 —831.0630 —1.0024

4 —5.1262¢—05 —0.2631 —553.8819 —0.3342

1.3 0.0595 —0.6383 —1.8006e+03 —3.3401
Case 7: 2 0.0127 —0.3382 —830.9517 —1.0023

4 —6.3903¢—07 —0.2501 —553.7986 —0.3341
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Table 2 Constant values [, F3, A; and Az for (Pb) (CoW)TiO;z determined from seven sets of boundary

conditions

Vi F F, A A

1.3 0.0409 —0.1327 113.9464 —3.3427
Case 1: 2 0.0070 —0.0705 52.5701 —1.0026

4 —0.0017 —0.0518 35.0124 —0.3332

1.3 0.0453 —0.1330 113.9565 —3.3433
Case 2: 2 0.0114 —0.0710 52.5853 —1.0034

4 0.0023 —0.0526 35.0419 —0.3345

1.3 0.0489 —0.1247 113.9504 —3.3435
Case 3: 2 0.0119 —0.0656 52.5800 —1.0034

4 0.0023 —0.0478 35.0369 —0.3345

1.3 —0.0080 —0.0080 —0.0040 8.5485e—004
Case 4: 2 —0.0049 —0.0049 —0.0099 8.0300e —004

4 —0.0040 —0.0040 —0.0245 0.0013

1.3 —0.0045 2.9394e —004 —0.0100 6.1672e—004
Case 5: 2 —0.0043 4.8608e —004 —0.0152 7.9882e —004

4 —0.0040 8.5077e —004 —0.0295 0.0013

1.3 0.0373 —0.1410 113.9525 —3.3424
Case 6: 2 —0.0759 —0.0759 52.5755 —1.0026

4 —0.0017 —0.0566 35.0174 —0.3333

1.3 0.0409 —0.1327 113.9464 —3.3427
Case 7: 2 0.0070 —0.0705 52.5701 —1.0026

4 —0.0017 —0.0518 35.0124 —0.3332

Table 3 Material properties for piezoelectric mater-

ials
Property PZT_ (Pb) (CoW) TiOs

Cu (all GPa) 111.0 128.0
Co 120.0 150.0
Css 120.0 150.0

Cu 22.6 56.5

Css 21.1 55.2

Ces 21.1 55.2

Cr 75.1 32.3

Cis 75.1 32.3

Cos 75.2 37.1

en (C/m?) 15.78 8.5
e (C/m?) —5.35 1.61
e/ & 1700 209
€s3/ € 1730 238

piezoelectric materials are tabulated in Table 3
(Heyliger and Wu, 1998) . The plots in the figures

depict results for each of the seven boundary
conditions (35) ~ (41), with three different aspect
ratios, #7=1.3,2 and 4. All quantities are plotted
versus dimensionless radius p=7#/a. Since 1<
©0<p, the plot for a given aspect ratio will ter-
minate at respective value of 7. In Figs. 2-7, the
piezoceramic PZT_5, is shown by solid line
and the piezoceramic (Pb) (CoW)TiOs, by dashed
line.

In Fig. 2, results are shown for case 1, where
internal pressure is applied. The compressive ra-
dial stress, shown in Fig. 2(a), increases mono-
tonically from its prescribed values of —1, at the
inner radius, to 0, at the outer radius. In Fig. 2
(b), the tensile hoop stress is monotonically de-
creased from the inner to the outer radius. Its
magnitude decreases with increasing aspect ratio,
and its value at the outer radius approaches zero
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for large aspect ratios. Although the boundary
conditions for case 1 require that the potential be
zero at inner and outer radii, Fig. 2(c) shows the
resulting induced electrical effect, and an electric

PZT-5
eeaeseas (PHYCoW)TIO;

02
04
"

{06

08

35 4

LT
0 P s )

35 4

1 15 2 25 3

(c)
Fig. 2 Case 1: Plots for stresses and potential for

Fig. 3
7=1.3,2,4(p=b/a)

potential has developed through thickness of the
sphere. As the aspect ratio increases, the location
of minimum potential tends to move towards

the inner radius. In this figure, the piezoceramic

PZT-5

“ s s se s e (Pb)(COWjT]..Ogg

Q0
(a)
w”
10
Tpa /-
B/f':(l:ﬂﬁ:""""“"""""“""““"“""'“
0¥
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(b)
1y
08,
05 ¢ 4",
04 - .'1‘ ".I.'
n'z ! ..'l " . lIﬁ
'. ‘-‘.‘ [ (LT -
[] -‘ ‘-‘.‘ il uup“"“
1 15 2 25 3 35 ]
el

(c)
Case 2: Plots for stresses and potential for
7=13,2,4(p=b/a)
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(Pb) (CoW) TiOs for each aspect ratio develops a
greater electric potential than PZT-5.

Figure 3 shows the results of case 2 (purely
electrical) boundary conditions. The compressive
radial stresses plotted in Fig. 3(a) are interest-
ingly minimum in the interior surface. For an
aspect ratio of 1.3, the minimum radial stress is
almost in the middle of the sphere thickness. As
the aspect ratio 7, increases to 4, the minimum
radial stress shifts to the inner radius. In Fig. 3
(b), the hoop stress is monotonically increased
from the inner to the outer radius. Its
magnitude increases with increasing aspect ratio,
and approaches to a constant value for larger
aspect ratios. In Fig. 3(c), the electric potential at
the inner surface has been fixed to 1, whereas the
ou- ter sphere surface is found to have zero
potential.

Case 3 (Fig. 4) is a superposition of cases I
and 2. The radial stress curves shown in Fig. 4(a)
have minimum interior amount. For an aspect
ratio of 1.3, the internal minimum stress is close to
the middle of the sphere thickness. As 7 increases
to 4, the location of minimum radial stress shifts
far to the left, resulting a change in the curvature
from concave up to concave down on the far right
side of the plot. For each aspect ratio, the radial
stress at the inner surface has been fixed to —1,
whereas the outer surface of the sphere is set to
zero. In this figure, the piezoceramic (Pb) (CoW)
TiOs for each aspect ratio develops a greater
radial stresses than PZT-5. Hoop stress plots
shown in Fig. 4(b) have similar shapes to those
in Fig. 3(b) (case 2). The electric potentials are
shown in Fig. 4(c). For 7=1.3 and 7=2, the
potentials decrease almost linearly from the
proposed value of 1 at the inner radius to zero at
the outer radius. Careful examination reveals that
7=2 potential curve is slightly concave up. This
trend is more apparent in the 7=4 graph, where
the potential has the concavity already seen in
Fig. 3.

In Fig. 5, results are shown for case 4, where
external pressure is applied. The compressive ra-
dial stress curve in case 4 boundary conditions
decreases monotonically from proposed value of
zero at the inner radius to —1 at the outer radius
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Fig. 5(a). The compressive hoop stress shown
in Fig. 5(b) decreases from the inner to the ou-
ter radius. The magnitude decreases with increas-
ing aspect ratio, and values at the outer radius
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approaches zero for larger aspect ratios. Inter- inner radius than PZT-5, but a higher value of
estingly the curves of two materials intersect. hoop stress near the outer radius. Fig. 5(c) shows
That is, (Pb) (CoW) TiOs, (dashed line) exhibits  the induced electrical effect. Although the bound-
a slightly lower value of hoop stress near the ary conditions for case 4 require that the electrical
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potential be zero at the inner and outer radii, an
electric potential has developed in the interior
of the thickness. The location of the maximum

potential tends to move towards the inner radius.
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Fig. 7 Case 6: Plots for stresses and potential for

7=13,2,4(9=b/a)

1931

The piezoelectric (Pb) (CoW)TiO3z develops a
greater electric potential than PZT-5.
The results of case 5, where internal and exter-

nal pressures are applied, are shown in Fig. 6.
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Fig. 8 Case 7: Plots for stresses and potential for
7=13,2,4(p=b/a)
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The compressive radial stress shown in Fig. 6(a),
has developed across the thickness of sphere.
As the aspect ratio increases, the location of
the maximum compressive radial stress tends to
move towards the inner radius. The piezoceramic
PZT-5 develops a greater compressive radial
stress than (Pb) (CoW) TiO; for each aspect ratio.
Hoop stress plots for case 5 boundary conditions
are shown in Fig. 6(b). The graphs of each aspect
ratio for both piezoceramics are monotonically
decreasing. Same as case 4 the graphs of the two
materials intersect and the piezoceramic (Pb)
(CoW)TiO; develops a lower value of hoop
stress near the inner radius than PZT-5, but a
higher value of hoop stress near the outer radius.
Fig. 6(c) shows the induced electrical effect. Al-
though the boundary conditions for case 5 re-
quire that the electric potential be zero at the
inner and the outer radii, an electric potential has
been developed across the thickness of sphere. As
aspect ratio increases, the location of the maxi-
mum potential tends to approach the inner radius.
For =4, the piezoceramic (Pb) (CoW) TiOs de-
velops a greater electric potential than PZT-5.
For »=1.3 and 7 =2, the electric potential for the
two materials are similar.

Case 6, Fig. 7, is a superposition of cases 4 and
2, leading to the superposition of Figs. 3 and 5.

Figure 8 results from case 7, i.e. superposition
of cases 1 and 6, and Figs. 2 and 7 accordingly.

Radial stresses, hoop stresses and electric po-
tential in Fig. 7 (case 6) and Fig. 8 (case 7) have
similar shapes to those in Fig. 3 (case 2).

5. Conclusions

In this research the static behavior of radially
polarized piezoelectric hollow spheres was stu-
died and the following results were concluded :

(1) In geometrically symmetric shapes, e.g. a
piezoelectric sphere that can be polarized in radi-
al direction, mechanical and electrical effects can
be investigated separately. The analysis approach
presented in this research can be applied on all
radially polarized piezoelectric spheres.

(2) A solution to the problem of static radial

A. Ghorbanpour, S. Golabi and M. Saadatfar

displacement and potential field of a piezoelectric
spherically isotropic hollow sphere, polarized in
the radial direction for seven different sets of
boundary conditions was obtained.

(3) Dimensionless stress distributions and elec-
tric potential curves were drawn and discussed in
detail for two piezoceramics, namely PZT_5 and
(Pb) (CoW) TiOs which have various applica-
tions in industry.

(4) The hoop stress comparing to the radial
stress causes failure of the elastic hollow spheres.
For two piezoceramics, at the first loading case in
which a sphere is subjected to just uniform inter-
nal pressure (Fig. 2), hoop stress distribution on
internal surface of the sphere is tensile for each
aspect ratio which provides an appropriate loca-
tion for fatigue crack growth.

(5) The technological implications of this
study are significant, e.g. the amount of hoop
stress resulting from mechanical loads in a hollow
piezoelectric sphere can be reduced or neutralized
by a suitably applied electrical field.
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